Skip to main content

Math Symbols

SymbolPronunciationShort DescriptionExample
Grouping Symbols
()( )parenthesesUsed to group expressions and indicate order of operations(b+c)(b + c)
[][ ]square brackets or bracketsUsed for intervals, matrices, and function arguments[0,1][0, 1]
[a,b)[a, b)interval from a to bThe interval from a to b, inclusive of a and exclusive of b[0,1)[0, 1)
{}\{ \}curly braces or bracesUsed for sets, piecewise functions, and grouping multiple elements{1,2,3}\{1, 2, 3\}
⟨ ⟩angle bracketsUsed for inner products, expected values, and Dirac notationx,y\langle x, y \rangle
 ⌊ \ ⌋floor bracketsFloor function - rounds down to nearest integer3.7=3\lfloor 3.7 \rfloor = 3
 ⌈ \ ⌉ceiling bracketsCeiling function - rounds up to nearest integer3.2=4\lceil 3.2 \rceil = 4
 \lvert \ \rvertmod, modulo, absoluteUsed for norms, determinants, and absolute valuesx\lvert x \rvert
Powers and Roots
x2x^2x squaredSquare of a number (raised to the power of 2)32=93^2 = 9
x3x^3x cubedCube of a number (raised to the power of 3)23=82^3 = 8
xnx^nx to the n or x to the nth powerNumber raised to the power of n4n4^n
x\sqrt{x}square root of xPrincipal square root of a number16=4\sqrt{16} = 4
x3\sqrt[3]{x}cube root of xRoot that when cubed gives the original number83=2\sqrt[3]{8} = 2
xn\sqrt[n]{x}nth root of xRoot that when raised to the nth power gives the original number164=2\sqrt[4]{16} = 2
Calculus Symbols
ddx\frac{d}{dx}d over dxFirst derivativeddx(x2)=2x\frac{d}{dx}(x^2) = 2x
\intintegralIndefinite integralx2dx=x33+C\int x^2 dx = \frac{x^3}{3} + C
ab\int_a^bintegral from a to bDefinite integral01x2dx=13\int_0^1 x^2 dx = \frac{1}{3}
\ointcontour integralClosed path integralCFdr\oint_C \vec{F} \cdot d\vec{r}
\iintdouble integralDouble integralRf(x,y)dA\iint_R f(x,y) dA
lim\limlimitLimit of a functionlimx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
limxa\lim_{x \to a}limit as x approaches aLimit as x approaches alimx2(x24)/(x2)=4\lim_{x \to 2} (x^2 - 4)/(x - 2) = 4
Δ\DeltadeltaChange in quantityΔx=x2x1\Delta x = x_2 - x_1
\inftyinfinityInfinite valuelimx1/x=0\lim_{x \to \infty} 1/x = 0
i=1n\sum_{i=1}^nsummation from 1 to nSummation notationi=1ni=n(n+1)2\sum_{i=1}^n i = \frac{n(n+1)}{2}
n=1an\sum_{n=1}^{\infty} a_nsum of a sub n from n equals 1 to infinityInfinite seriesn=11n2=π26\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
k=0n(nk)\sum_{k=0}^n \binom{n}{k}sum from k equals zero to n of n choose kSum of binomial coefficients (equals 2n2^n)k=0n(nk)=2n\sum_{k=0}^n \binom{n}{k} = 2^n
Algebra Symbols
identical to or congruent toMathematical congruence or identityx2+2x+1(x+1)2x² + 2x + 1 ≡ (x+1)²
anaₙa sub nNth term of sequencean=2n+1aₙ = 2n + 1
(nk)n \choose kn choose kBinomial coefficient(52=10)5 \choose 2 = 10
!!factorialProduct of first n natural numbers5!=1205! = 120
PrⁿPᵣn P rPermutationP2=20⁵P₂ = 20
CrⁿCᵣn C rCombinationC2=10⁵C₂ = 10
logba\log_b alog base b of aLogarithmlog28=3\log_2 8 = 3
lnxln xnatural log of xNatural logarithm (base e)lne=1ln e = 1
a:ba:ba to bRatio of a to ba:b=2:3a:b = 2:3
a:b::c:da:b::c:da to b as c to dProportion2:4::3:62:4::3:6
Probability Symbols
P(A)P(A)probability of AProbability of event A occurringP(heads)=0.5P(\text{heads}) = 0.5
P(AB)P(A \mid B)probability of A given BConditional probability of A occurring given B has occurredP(rainclouds)=0.8P(\text{rain} \mid \text{clouds}) = 0.8
P(AB)P(A \cup B)probability of A union B or probability of A or BProbability that either A or B (or both) occursP(AB)=P(A)+P(B)P(AB)P(A \cup B) = P(A) + P(B) - P(A \cap B)
P(AB)P(A \cap B)probability of A intersection B or probability of A and BProbability that both A and B occurP(AB)=0.2P(A \cap B) = 0.2
P(A)P(A')probability of A complementProbability that A does not occurP(A)=1P(A)P(A') = 1 - P(A)
E[X]E[X]expected value of XAverage value of random variable XE[X]=xipiE[X] = \sum x_i p_i
xˉ\bar{x}x barThe average of x (sample mean)xˉ=1ni=1nxi\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i
f(x)f(x)f of xProbability density functionf(x)=12πσ2e(xμ)22σ2f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
F(x)F(x)F of xCumulative distribution functionF(x)=P(Xx)F(x) = P(X \leq x)
thereforeLogical conclusionx=2,x2=4x = 2, ∴ x² = 4
becauseReason or causex2=4x=2x² = 4 ∵ x = 2
impliesLogical implicationx>0x2>0x > 0 ⇒ x² > 0
implied byReverse implicationx2>0x>0x² > 0 ⇐ x > 0
if and only ifBiconditionalx=1x2=1x = 1 ⇔ x² = 1
\partialpartialPartial derivativefx\frac{\partial f}{\partial x}
Linear Algebra
v\vec{v}vector vA vector in a vector spacev=[123]\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
AB\mathbf{A} \odot \mathbf{B}A Hadamard B or element-wise productHadamard (element-wise) product[1234][5678]=[5122132]\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 12 \\ 21 & 32 \end{bmatrix}
Set Theory Symbols
for allUniversal quantifierxR,x20∀x ∈ ℝ, x² ≥ 0
\inbelongs to or element ofIndicates membership of an element in a setxAx \in A means x is an element of set A
\notindoes not belong to or not element ofIndicates non-membership of an element in a setxAx \notin A means x is not an element of set A
\subseteqsubset of or contained inSet A is a subset of set B (includes equality)ABA \subseteq B means every element of A is in B
\subsetproper subset ofSet A is a proper subset of set B (strict inclusion)ABA \subset B means A is subset of B but A ≠ B
\supseteqsuperset of or containsSet A is a superset of set B (includes equality)ABA \supseteq B means every element of B is in A
\supsetproper superset ofSet A is a proper superset of set B (strict inclusion)ABA \supset B means A is superset of B but A ≠ B
\cupunion or cupSet of elements in either setAB={xxAxB}A \cup B = \{x \mid x \in A \lor x \in B\}
\capintersection or capSet of elements common to both setsAB={xxAxB}A \cap B = \{x \mid x \in A \land x \in B\}
\setminusset minus or withoutSet difference (elements in first set but not second)AB={xxAxB}A \setminus B = \{x \mid x \in A \land x \notin B\}
\trianglesymmetric differenceSet of elements in exactly one of the two setsAB=(AB)(BA)A \triangle B = (A \setminus B) \cup (B \setminus A)
\emptysetempty set or null setSet with no elements={}\emptyset = \{\}
A\vert A \vertcardinality of A or size of ANumber of elements in set AA=n\vert A \vert = n means A has n elements
N\mathbb{N}natural numbersSet of non-negative integersN={0,1,2,3,}\mathbb{N} = \{0, 1, 2, 3, \ldots\}
Z\mathbb{Z}integersSet of all integersZ={,2,1,0,1,2,}\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}
Q\mathbb{Q}rational numbersSet of numbers that can be expressed as fractionsQ={pqp,qZ,q0}\mathbb{Q} = \{\frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0\}
R\mathbb{R}real numbersSet of all real numbersR\mathbb{R} includes all rational and irrational numbers
C\mathbb{C}complex numbersSet of numbers of the form a + biC={a+bia,bR}\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}
A\mathbb{A}algebraic numbersComplex numbers that are roots of polynomials2,iA\sqrt{2}, i \in \mathbb{A} but πA\pi \notin \mathbb{A}
I\mathbb{I}irrational numbersReal numbers that are not rationalπ,e,2I\pi, e, \sqrt{2} \in \mathbb{I}