Skip to main content

Matrices

Definition​

The Matrices Algorithm involves operations on matrices, typically for tasks such as multiplication, addition, or finding determinants

Practice​

matrix_addition(matrix1, matrix2):
// Check if matrices have the same dimensions
if dimensions of matrix1 != dimensions of matrix2:
return "Matrices must have the same dimensions"
else:
// Initialize an empty matrix for the result
result_matrix = empty matrix with dimensions of matrix1
// Iterate through each element of the matrices
for i from 0 to number of rows in matrix1:
for j from 0 to number of columns in matrix1:
// Add corresponding elements and store the result in the result matrix
result_matrix[i][j] = matrix1[i][j] + matrix2[i][j]
return result_matrix

matrix_multiplication(matrix1, matrix2):
// Check if matrices can be multiplied (number of columns in matrix1 == number of rows in matrix2)
if number of columns in matrix1 != number of rows in matrix2:
return "Number of columns in matrix1 must be equal to number of rows in matrix2"
else:
// Initialize an empty matrix for the result
result_matrix = empty matrix with dimensions (rows of matrix1) x (columns of matrix2)
// Iterate through each row of matrix1
for i from 0 to number of rows in matrix1:
// Iterate through each column of matrix2
for j from 0 to number of columns in matrix2:
// Initialize the sum for the current element of the result matrix
sum = 0
// Iterate through each column of matrix1 (or each row of matrix2)
for k from 0 to number of columns in matrix1:
// Multiply corresponding elements and accumulate the sum
sum += matrix1[i][k] * matrix2[k][j]
// Store the sum as the resulting element in the result matrix
result_matrix[i][j] = sum
return result_matrix

find_determinant(matrix):
// Check if the matrix is square
if number of rows != number of columns:
return "Matrix must be square"
else if matrix is 2x2:
// Calculate determinant for 2x2 matrix using the formula ad - bc
return (matrix[0][0] * matrix[1][1]) - (matrix[0][1] * matrix[1][0])
else:
// Implement determinant calculation method (e.g., cofactor expansion)

find_determinant(matrix):
// Check if the matrix is square
if number of rows != number of columns:
return "Matrix must be square"
else if matrix is 2x2:
// Calculate determinant for 2x2 matrix using the formula ad - bc
return (matrix[0][0] * matrix[1][1]) - (matrix[0][1] * matrix[1][0])
else:
// Initialize determinant variable
determinant = 0
// Iterate through each column of the matrix
for col from 0 to number of columns in matrix:
// Calculate cofactor (submatrix) for the current element
cofactor = submatrix obtained by removing the first row and current column
// Calculate the sign of the current element's contribution to the determinant
sign = (-1)^(row + col) // Alternating signs for each element
// Recursively calculate determinant using cofactor expansion
determinant += sign * matrix[0][col] * find_determinant(cofactor)
return determinant