Primality Test
Definition​
- Definition
- Explanation
- Guidance
- Tips
The Primality Test Algorithm is a method used to determine whether a given integer is prime or not. It involves evaluating the divisibility of the number by smaller integers to ascertain if it has any factors other than 1 and itself. The algorithm leverages efficient techniques to minimize computational complexity
Checking whether the given number n
is divisible by any integer other than 1 and itself. It begins by testing divisibility with 2, then proceeds to check odd integers up to the square root of n
. If n
is divisible by any of these integers, it is deemed composite; otherwise, it is considered prime.
- Start by checking if the given number is less than 2. If so, it cannot be prime
- If the number is 2, it is prime
- Check if the number is divisible by 2. If yes, it is not prime
- Iterate through odd numbers starting from 3 up to the square root of the given number
- For each odd number, check if the given number is divisible by it. If yes, it is not prime
- If none of the above conditions are met, the number is prime
- utilize efficient techniques such as checking divisibility only up to the square root of the given number to minimize computational complexity
- implement optimizations like skipping even numbers greater than 2 in the iteration process since they cannot be prime
Practice​
- Practice
- Solution
isPrime(n):
if n < 2:
return false
if n == 2:
return true
if n % 2 == 0:
return false
limit = floor(sqrt(n))
for i = 3 to limit step 2:
if n % i == 0:
return false
return true
package main
import (
"math"
)
func trialDivision(number int) bool {
if number <= 1 || (number%2 == 0 && number != 2) {
return false
}
dividerLimit := int(math.Sqrt(float64(number)))
for divider := 3; divider <= dividerLimit; divider += 2 {
if number%divider == 0 {
return false
}
}
return true
}
public class Main {
public static boolean trialDivision(int number) {
if (number <= 1 || (number % 2 == 0 && number != 2)) {
return false;
}
int dividerLimit = (int) Math.sqrt(number);
for (int divider = 3; divider <= dividerLimit; divider += 2) {
if (number % divider == 0) {
return false;
}
}
return true;
}
}
function trialDivision(number) {
if (number <= 1 || (number % 2 === 0 && number !== 2)) {
return false;
}
const dividerLimit = Math.sqrt(number);
for (let divider = 3; divider <= dividerLimit; divider += 2) {
if (number % divider === 0) {
return false;
}
}
return true;
}
fun trialDivision(number: Int): Boolean {
if (number <= 1 || (number % 2 == 0 && number != 2)) {
return false
}
val dividerLimit = Math.sqrt(number.toDouble()).toInt()
for (divider in 3..dividerLimit step 2) {
if (number % divider == 0) {
return false
}
}
return true
}
import math
def trialDivision(number):
if number <= 1 or (number % 2 == 0 and number != 2):
return False
dividerLimit = int(math.sqrt(number))
for divider in range(3, dividerLimit + 1, 2):
if number % divider == 0:
return False
return True
fn trial_division(number: u32) -> bool {
if number <= 1 || (number % 2 == 0 && number != 2) {
return false;
}
let divider_limit = (number as f64).sqrt() as u32;
for divider in (3..=divider_limit).step_by(2) {
if number % divider == 0 {
return false;
}
}
true
}
function trialDivision(number: number): boolean {
if (number <= 1 || (number % 2 === 0 && number !== 2)) {
return false;
}
const dividerLimit = Math.sqrt(number);
for (let divider = 3; divider <= dividerLimit; divider += 2) {
if (number % divider === 0) {
return false;
}
}
return true;
}